
DOI 10.1140/epja/i2006-10053-5

Eur. Phys. J. A 28, 213–225 (2006) THE EUROPEAN

PHYSICAL JOURNAL A

Static observables of relativistic three-fermion systems with
instantaneous interactions

C. Haupta, B. Metsch, and H.-R. Petry

Helmholtz-Institut für Strahlen- und Kernphysik, Nußallee 14-16, D-53115 Bonn, Germany

Received: 16 February 2006 / Revised: 13 April 2006 /
Published online: 21 June 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006
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Abstract. We show that static properties like the charge radius and the magnetic moment of relativistic
three-fermion bound states with instantaneous interactions can be formulated as expectation values with
respect to intrinsically defined wave functions. The resulting operators can be given a natural physical
interpretation in accordance with relativistic covariance. We also indicate how the formalism may be gen-
eralized to arbitrary moments. The method is applied to the computation of static baryon properties with
numerical results for the nucleon charge radii and the baryon octet magnetic moments. In addition, we
make predictions for the magnetic moments of some selected nucleon resonances and discuss the decom-
position of the nucleon magnetic moments in contributions of spin and angular momentum, as well as the
evolution of these contributions with decreasing quark mass.

PACS. 11.10.St Bound and unstable states; Bethe-Salpeter equations – 12.39.Ki Relativistic quark model
– 13.40.Em Electric and magnetic moments

1 Introduction

Static observables of bound-state systems in field-
theoretic descriptions are usually extracted from form fac-
tors in the limit of vanishing squared four-momentum
transfer of the probing exchange particle. For example, the
mean square charge radius is defined as the slope of the
electric form factor at Q2 = 0 and the magnetic moment is
the value of the magnetic form factor at the photon point.
Although such an approach is suitable to produce pure
numbers it hardly leads to any insight into the underlying
structure of the observable. It is, for example, well known
how a fermion produces a magnetic moment through both
its spin and its angular motion, but how does that trans-
late into the magnetic moment of a bound state, e.g., a
baryon composed of three quarks?

On the other hand, static properties in non-relativistic
quantum mechanics can be formulated by means of expec-
tation values involving essentially scalar products of wave
functions. The non-relativistic charge radius of a compos-
ite system of N particles for example is given by

〈r2〉 = 〈ψ|
∑N

i=1 qi(xi −R)2|ψ〉
Q〈ψ|ψ〉 , (1)

where qi is the charge of particle i, xi its position, R
the center-of-mass coordinate and Q the net charge of the
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system. A direct relativistic generalization of this expres-
sion is unknown. In this paper we will focus our attention
to a quark model description of baryons. The generaliza-
tion to other systems is then quite obvious. We will show
that a synthesis of both approaches mentioned before is
indeed possible —at least if certain restrictions are made
to the kind of interactions between the constituents of the
bound system— and leads to new insights into the struc-
ture of static properties. Moreover, the actual computa-
tion of static moments is then easier and also numerically
more reliable in comparison to the computation of form
factors in the limit Q2 → 0.

We work within the framework of the Bethe-Salpeter
equation which has been successfully applied to, e.g.,
baryon mass spectra [1–3] and form factors [4,5].

First, we briefly outline the Bethe-Salpeter formalism.
Details may be found in ref. [1]. The construction of cur-
rent matrix elements from Bethe-Salpeter amplitudes is
addressed, of which a detailed discussion is given in [4].
Since by far the most interesting static observables for
physical applications are mean square charge radii and
magnetic moments, we show how they can be formulated
as expectation values with respect to Salpeter amplitudes.
These amplitudes turn out to be the natural quantities
which replace the non-relativistic wave functions and pos-
sess a canonical scalar product. Static observables are then
represented by certain well-defined operators whose ex-
pectation values are computed with the help of this scalar
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product. The emerging operators can be given a natural
physical interpretation and show very interesting struc-
tures. To demonstrate the relevance of this formalism, we
apply it to a concrete physical model for baryons described
in refs. [1–3] to compute nucleon charge radii and mag-
netic moments and indicate how higher moments can in
principle be computed.

2 Bethe-Salpeter equation and current matrix

elements

2.1 Bethe-Salpeter equation

The basic quantity which describes three fermions as a
bound state is the Bethe-Salpeter amplitude which is de-
fined in position space through:

χP̄ a1a2a3
:= 〈0|Tψ1

a1
(x1)ψ

2
a2
(x2)ψ

3
a3
(x3)|P̄ 〉, (2)

where ψi
ai(xi) are fermion field operators given in the

Heisenberg picture and ai are multi-indices in Dirac space
and any internal space which represents a degree of free-
dom the particle may have. T is the time ordering opera-
tor. Here |0〉 denotes the physical i.e. interacting vacuum
and |P̄ 〉 denotes a three-fermion bound state with total
four-momentum P̄ on the mass shell, i.e. P̄ 2 = M2. Be-
cause of translational invariance it is convenient to intro-
duce a center-of-mass coordinate X and so-called Jacobi
coordinates ξ and η:

X := 1
3 (x1 + x2 + x3), x1 = X + 1

2ξ +
1
3η ,

ξ := x1 − x2, x2 = X − 1
2ξ +

1
3η , (3)

η := 1
2 (x1 + x2 − 2x3), x3 = X − 2

3η .

The corresponding conjugate momenta are then given by
the total four-momentum P and the two relative momenta
pξ and pη:

P := p1 + p2 + p3, p1 = 1
3P + pξ +

1
2pη ,

pξ := 1
2 (p1 − p2), p2 = 1

3P − pξ + 1
2pη , (4)

pη := 1
3 (p1 + p2 − 2p3), p3 = 1

3P − pη .

Using this set of coordinates the total momentum depen-
dence factorizes and we may define the Bethe-Salpeter am-
plitude in momentum space depending only on the relative
momenta:

χP̄ a1a2a3
(x1, x2, x3) =: e−i〈P̄ ,X〉

∫

d4pξ
(2π)4

d4pη
(2π)4

× e−i〈pξ,ξ〉e−i〈pη,η〉χP̄ a1a2a3
(pξ, pη). (5)

One may write the sum of all two-body interactions in the
form of a three-body interaction kernel:

K̄
(2)
a1a2a3;a′

1
a′

2
a′

3

:= K
(2)
12 a1a2;a′

1
a′

2

(

2
3 P̄ + pη, pξ, p

′
ξ

)

×S3
F
−1
a3a′

3

(2π)4δ(4)(pη − p′η)
+cycl. perm. (6)

Then by introducing the three-particle propagator

G0a1a2a3;a′

1
a′

2
a′

3
(P, pξ, pη, p

′
ξ, p

′
η) := (2π)4δ(4)(pξ − p′ξ)

× (2π)4δ(4)(pη − p′η)S1
F a1a′

1

(

1
3 P̄ + pξ +

1
2pη
)

× S2
F a2a′

2

(

1
3 P̄ − pξ + 1

2pη
)

S3
F a3a′

3

(

1
3 P̄ − pη

)

, (7)

the Bethe-Salpeter equation can be written in a compact
notation

χP̄ = −iG0

(

K(3) + K̄(2)
)

χP̄ , (8)

where a summation over multi-indices and momentum in-
tegrations is tacitly understood.

The Bethe-Salpeter equation would be incomplete
without a prescription of how to normalize its solutions.
Such a prescription can indeed be found (see ref. [1]). In
a covariant form and using our compact notation it reads

−iχP̄

[

Pµ ∂

∂Pµ

(

G−10 + iK(3) + iK(2)
)

]

P=P̄

χP̄ = 2M2,

(9)
where G−10 is the inverse three-particle propagator, i.e.

the inverse of (7). Here we introduced the adjoint Bethe-
Salpeter amplitude defined as

χP̄ a1a2a3
:= 〈P̄ |T ψ̄1

a1
(x1)ψ̄

2
a2
(x2)ψ̄

3
a3
(x3)|0〉. (10)

2.2 Salpeter equation

In order to solve the Bethe-Salpeter equation in physical
cases relevant for, e.g., the structure of hadrons, one ap-
plies two approximations. First, the full propagators are
replaced by the free ones:

Si
F (pi) =

i

p/i −mi + iε
. (11)

This approximation accounts for self-energy contributions
merely by the introduction of effective fermion masses mi.
Neglecting retardation effects in the interaction kernels
leads to the second, so-called, instantaneous approxima-
tion. This assumes that there is no dependence of the in-
teraction kernels on the relative energies in the rest frame
of the composite system:

K(3)(P, pξ, pη, p
′
ξ, p

′
η)

∣

∣

∣

∣

P=(M,0)

= V (3)(pξ,pη,p
′
ξ,p

′
η)

(12)

K(2)
(

2
3P + pη, pξ, p

′
ξ

)

∣

∣

∣

∣

P=(M,0)

= V (2)(pξ,p
′
ξ). (13)

These conditions can be formulated in any reference
frame, if all momenta are replaced by

p⊥ := p− 〈p, P 〉
P 2

P . (14)

This space-like vector is perpendicular to the total four-
momentum and in the rest frame of the system has the
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desired form p⊥ = (0,p). Thus, formal covariance of the
Bethe-Salpeter equation is maintained.

Adopting both approximations, it is possible to in-
tegrate out the dependence on the relative energies
in the Bethe-Salpeter equation (8), thus reducing the
eight-dimensional integral equation to the six-dimensional
Salpeter equation. This procedure is straightforward if
there are no two-body interactions in the system. The
unconnected part of K̄(2) however makes the reduction
more involved. One is then forced to introduce an effec-
tive three-body kernel V eff

M which accounts for the effect
of the two-body interaction approximately (see [2] for de-
tails). The effective interaction kernel is then expanded in

powers of K
(2)
M + V

(3)
R , where V

(3)
R is the contribution to

the three-body interaction V (3) = V
(3)
Λ +V

(3)
R that couples

to mixed energy components exclusively. V
(3)
Λ then corre-

spondingly is the contribution to the three-particle ker-
nel that involves only pure energy components. Up to the

lowest-order Born approximation V eff
M

(1)
the correspond-

ing Salpeter equation then reads

ΦΛ
M (pξ,pη) =
[

Λ+++

M −Ω + iε
+

Λ−−−

M +Ω − iε

]

γ0 ⊗ γ0 ⊗ γ0

×
∫

d3p′ξ
(2π)3

d3p′η
(2π)3

V (3)(pξ,pη;p
′
ξ,p

′
η)Φ

Λ
M (p′ξ,p

′
η)

+

[

Λ+++

M −Ω + iε
− Λ−−−

M +Ω − iε

]

γ0 ⊗ γ0 ⊗ 1I

×
∫

d3p′ξ
(2π)3

V (2)(pξ,p
′
ξ)⊗ 1IΦΛ

M (p′ξ,pη)

+ terms with cycl. perm. of two-body force. (15)

Here we introduced the short-hand notation Λ±±± :=
Λ±1 (p1) ⊗ Λ±2 (p2) ⊗ Λ±3 (p3), where Λ±i (pi) are projec-
tors onto positive or negative energy, respectively and
Ω := ω1(p1) + ω2(p2) + ω3(p3) is the sum of the rela-

tivistic one-particle energies ωi(pi) =
√

|pi|2 +m2
i . The

Salpeter equation involves the Salpeter amplitudes, which
are projected onto purely positive- and negative-energy
components, respectively:

ΦΛ
M (pξ,pη) :=

[

Λ+++(pξ,pη) + Λ−−−(pξ,pη)
]

×
∫

dp0ξ
2π

dp0η
2π

χM (pξ, pη). (16)

The full Bethe-Salpeter amplitude, which is needed to cal-
culate current matrix elements, can be reconstructed from
the Salpeter amplitude in the following way:

χM =
[

G0 − iG0

(

V
(3)
R + K̄

(2)
M − V eff

P

(1)
)

G0

]

ΓΛ
M , (17)

where the so-called vertex functions ΓΛ
M were introduced,

which in lowest order in V eff
M are connected to the Salpeter

amplitudes by

ΦΛ
M = i

[

Λ+++

M −Ω +
Λ−−−

M +Ω

]

γ0 ⊗ γ0 ⊗ γ0ΓΛ
M . (18)

From the normalization condition (9) a corresponding nor-
malization for the Salpeter amplitudes can be deduced,
which in Born approximation reads

〈ΦΛ
M |ΦΛ

M 〉=
∫

d3pξ
(2π)3

d3pη
(2π)3

ΦΛ
M

∗
(pξ,pη)Φ

Λ
M (pξ,pη)=2M.

(19)
Summation over discrete indices is implicitly understood
here. This norm immediately induces a positive definite
scalar product:

〈Φ1|Φ2〉 :=
∫

d3pξ
(2π)3

d3pη
(2π)3

Φ∗1(pξ,pη)Φ2(pξ,pη), (20)

whose existence is of utmost importance since static ob-
servables will be formulated as expectation values with
respect to this scalar product as announced in the intro-
duction.

2.3 Current matrix elements

To compute any electromagnetic observable, we need to
know the electromagnetic current 〈P, λ|jµ(x)|P ′, λ′〉 be-
tween states with total four-momenta P ′ and P and he-
licities λ′ and λ, respectively, where jµ(x) is the current
operator:

jµ(x) =: ψ̄(x)q̂γµψ(x) :, (21)

with the charge operator q̂. This current matrix ele-
ment can be derived by studying the response of the
system in an external electromagnetic field in first or-
der of the electromagnetic coupling strength [4]. One
then finds that the corresponding correlation function
Gµ

P,P ′(pξ, pη, p
′
ξ, p

′
η) separates at the poles in the total en-

ergy of the system in the following way:

Gµ
P,P ′(pξ, pη, p

′
ξ, p

′
η) =

1

4ωPω′P ′

χP (pξ, pη)

P 0 − ωP + iε
〈P |jµ(0)|P ′〉 χP ′(pξ, pη)

P ′0 − ωP ′ + iε

+ regular terms for P 0 → ωP and P ′
0 → ωP ′ . (22)

The Mandelstam formalism and minimal coupling deliver
an independent way to determine Gµ

P,P ′ . By comparison

one then finds the following current matrix element [4]:

〈P |jµ(0)|P ′〉 = −3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

× ΓΛ

P (pξ, pη)S
1
F

(

pξ +
1
2pη
)

⊗ S2
F

(

− pξ + 1
2pη
)

⊗ S3
F (P

′ − pη)γµq̂S3
F (P − pη)ΓΛ

P ′(pξ, pη), (23)

where the adjoint vertex function Γ
Λ

M (pξ, pη) is related to
ΓΛ
M (pξ, pη) through

Γ
Λ

M (pξ, pη) = −ΓΛ
M

†
(pξ, pη)γ

0 ⊗ γ0 ⊗ γ0. (24)

Actually, the form of the matrix element in eq. (23) as cal-
culated in ref. [4] involves the same kind of approximation
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as in eq. (17). For the following it is however important to
note that this approximation respects the rules of formal
covariance. Note that in the current matrix element (23)
the photon couples to the third fermion exclusively. The
couplings to the other fermions have been accounted for
by a factor of 3. This is possible, since the vertex func-
tions, which describe a composite fermion system, are to-
tally antisymmetric. With the explicit boost prescription
of the vertex function:

ΓΛ
P (pξ, pη) = SΛP

⊗SΛP
⊗SΛP

ΓΛ
M (Λ−1pξ,Λ

−1pη), (25)

the time component of the current matrix element in the
Breit frame takes the form

〈PP |j0(0)|P 〉 = −3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

×
[

S2
ΛP
⊗ S2

ΛP
⊗ 1I

]

[

1I⊗ 1I⊗ γ0q̂S3
F

(

M − Λ−1P

2
pη
)

]

×ΓΛ
M

(

Λ−1
P

2
pξ,Λ

−1
P

2
pη
)

, (26)

where P is the space inversion operator, i.e. P(x0,x) =
(x0,−x). The spatial components are accordingly

〈PP |ji(0)|P 〉 = −3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

×
[

S2
ΛP
⊗ S2

ΛP
⊗ S2

ΛP

]

×
[

1I⊗ 1I⊗ q̂
(

γi + [γi, SΛP
]−
)

S3
F

(

M − Λ−1P

2
pη
)

]

×ΓΛ
M

(

Λ−1
P

2
pξ,Λ

−1
P

2
pη
)

. (27)

Note that in both cases we commuted a triple tensor prod-
uct of SΛP

past the three fermion propagators and then
did an integral transformation to obtain two successive
boosts. This also explains the appearance of the commu-
tator [γi, SΛP

]− in the spatial components of the current
matrix element.

3 The charge radius

3.1 From charge distributions to charge radii

In the next two section we review the definition and precise
computation of a particular observable namely the charge
radius of a composite system in the framework of quan-
tum field theory. The results are well known but we add
them here for a better understanding. Given some charge
distribution ρ(x) one defines its mean square radius by

〈r2〉 = 1

Q

∫

d3x |x|2ρ(x). (28)

The radius is normalized by the net charge Q, which is
simply the integral of ρ(x) over the whole space:

Q =

∫

d3x ρ(x). (29)

However, if the charge distribution has no net charge,
the normalization 1/Q is of course dropped. If we turn
to quantum-mechanical systems, the charge distribution
is given by the time component j0(x) of the four-vector
current of the state |ψ〉 that describes the system:

ρ(x) =
〈ψ|j0(x)|ψ〉
〈ψ|ψ〉 . (30)

Such a state |ψ〉 can be represented as a superposition of
momentum eigenstates

|ψ〉 =
∫

d3P

ωP

ψ(P )|P 〉. (31)

ψ(P ) is the wave function in momentum space and the
states |P 〉 are normalized according to

〈P |P ′〉 = 2ωP (2π)3δ(3)(P − P ′). (32)

This immediately fixes the normalization of the states |ψ〉:

〈ψ|ψ〉 = 2(2π)3
∫

d3P

ωP

ψ∗(P )ψ(P ). (33)

Let us further investigate the charge distribution by in-
serting (31) into (30):

ρ(x) =
1

〈ψ|ψ〉

∫

d3P

ωP

∫

d3P ′

ωP ′

exp
(

i(P − P ′) · x
)

×ψ∗(P )ψ(P ′)〈P |j0(0)|P ′〉. (34)

We used space translation invariance here to separate
the spatial dependence. As is well known the integral
∫

d3x exp(ip · x) is a representation of the delta distri-
bution. So it follows:
∫

d3x |x|2 exp
(

i (P − P ′) · x
)

= − (2π)3

4
(∇P −∇P ′)2 δ(3)(P − P ′). (35)

Using (31), (34) and (35) we obtain
∫

d3x |x|2〈ψ|j0(x)|ψ〉 = − (2π)3

4

∫

d3P

ωP

∫

d3P ′

ωP ′

×ψ∗(P )ψ(P ′)〈P |j0(0)|P ′〉
× (∇P −∇P ′)2δ(3)(P − P ′). (36)

On the right-hand side of this equation we may now inte-
grate by parts twice and subsequently do one of the two
momentum integrations:
∫

d3x |x|2〈ψ|j0(x)|ψ〉 = − (2π)3

4

∫

d3P

×
{ |ψ(P )|2

ω2
P

[

(∇P −∇P ′)2〈P |j0(0)|P ′〉
]

P ′=P

−
[

(∇P −∇P ′)2
ψ∗(P )

ωP

ψ(P ′)

ωP ′

]

P ′=P

〈P |j0(0)|P 〉

−
[

(∇P −∇P ′)
ψ∗(P )

ωP

ψ(P ′)

ωP ′

]

P ′=P

·
[

(∇P −∇P ′)〈P |j0(0)|P ′〉
]

P ′=P

}

. (37)
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The last of this three terms vanishes, because ∇P and
∇P ′ change sign under space reflection, in other words
are of odd parity. So if we assume that the states |P 〉 have
definite parity then 〈P |j0(0)∇P |P 〉 = 0.

So far we have considered wave packets that consist
of a superposition of states with different momenta. To
obtain states with definite i.e. sharp momenta consider
first a Gaussian wave packet with a width proportional to
some parameter λ:

ψ(P ) = exp(−|P |2/(2λ2)). (38)

Before we let λ go to zero to define a definite momentum
state let us inspect the second term in (37). Because for
the Gaussian wave packet from (38) the wave function is
real, i.e. ψ∗(P ) = ψ(P ), we have

[

(∇P −∇P ′)2
ψ(P )

ωP

ψ(P ′)

ωP ′

]

P ′=P

= 0. (39)

Therefore also this term does not contribute to the charge
radius and we are left with the first term in (37) only.

Let us now turn to the limit λ→ 0 again. Since in this
limit exp(−|P |2/λ2) is another representation of the delta
distribution we find

lim
λ→0

|ψ(P )|2
ωP 〈ψ(P )|ψ(P )〉 =

δ(3)(P )

2(2π)3
. (40)

Inserting this together with the first term of (37) into the
basic definition of the charge radius (28) and performing
the final momentum integration yields

〈r2〉 = − 1

8MQ
(∇P −∇P ′)2〈P |j0(0)|P ′〉

∣

∣

∣

∣

P ′=P=0

, (41)

where M is the rest mass of the system. The current ma-
trix element appearing here is given in the Breit frame if
we make the following transformation:

(∇P −∇P ′)2〈P |j0(0)|P ′〉
∣

∣

∣

∣

P ′=P=0

= ∆P 〈PP |j0(0)|P 〉
∣

∣

∣

∣

P=0

. (42)

We then finally end up with the expression

〈r2〉 = − 1

8MQ
∆P 〈PP |j0(0)|P 〉

∣

∣

∣

∣

P=0

. (43)

3.2 From form factors to charge radii

In the last section the derivation of the charge radius op-
erator started from defining the mean square radius of a
charge distribution. As is well known there is another def-
inition of the charge radius that involves the electric form
factor of the system. There the charge radius is defined as
the slope of the electric form factor at the photon point. In

this subsection we investigate the interconnection between
both definitions and show that they indeed coincide.

Let us briefly recall some basic definitions in the
context of form factors. From current conservation and
Lorentz invariance the electromagnetic vector current of a
spin-1/2 state can be parameterized as follows:

〈P ′, λ′|jµ(0)|P, λ〉 = eūλ′(P ′)

×
[

γµ
(

F1(Q
2) + F2(Q

2)
)

− P ′µ + Pµ

2M
F2(Q

2)

]

uλ(P ).

(44)

F1 and F2 are the Dirac and Pauli form factors, respec-
tively. The Dirac form factor is normalized to the charge
Q, whereas the Pauli form factor is normalized to the
anomalous magnetic moment κ. Both form factors are
functions of the squared invariant momentum transfer
Q2 := −q2 = −(P ′ − P )2. The Dirac spinors are nor-
malized in a Lorentz-invariant fashion:

ūλ′(P )uλ(P ) = 2M δλ′λ. (45)

Using this normalization one shows that

ūλ′(PP )uλ(P ) = 2
√

M2 +Q2/4δλ′λ (46)

as well as
ūλ′(PP )γ0uλ(P ) = 2Mδλ′λ. (47)

Using both expressions one can write the time component
of the electromagnetic vector current (44) in the Breit
frame as

〈PP, λ|j0(0)|P, λ〉 = 2eMGE(Q
2), (48)

where GE(Q
2) is the electric Sachs form factor. It is de-

fined together with the magnetic Sachs form factor as a
combination of the Dirac and Pauli form factors:

GE(Q
2) := F1(Q

2)− Q2

4M2
F2(Q

2), (49)

GM (Q2) := F1(Q
2) + F2(Q

2). (50)

The mean square charge radius is defined as the slope of
the electric form factor at the photon point i.e. at Q2 = 0:

〈r2〉 = − 6

GE(0)

dGE(Q
2)

dQ2

∣

∣

∣

∣

Q2=0

. (51)

Since GE(0) = F1(0) = Q the normalization 1/GE(0) is
dropped in case the net charge vanishes. From this defini-
tion together with (48) we then find

〈r2〉 = − 3

MQ

d

dQ2
〈PP, λ|j0(0)|P, λ〉

∣

∣

∣

∣

Q2=0

. (52)

This result has to be compared to the one that we ob-
tained in the previous section, namely eq. (43). There we
found the Laplace operator with respect to P instead of
a single derivative with respect to Q2 acting on the cur-
rent matrix element. However both expressions turn out
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to be exactly equal: From the parameterization of the vec-
tor current (44) it is clear that the current matrix element
〈PP, λ|j0(0)|P, λ〉 depends on Q2. In the Breit frame the
dependence of Q2 on the momenta of the incoming and
outgoing bound states becomes rather simple. It reads
Q2 = 4|P |2. Then, for any function f depending on 4|P |2
the following identity holds:

∆P f
(

4|P |2
)

= 4
(

∆P |P |2
) d

dQ2
f(Q2) = 24

d

dQ2
f(Q2).

(53)
Inserting this into (43) we see that it coincides with (52).
Thus, the definition of the charge radius from form factors
is exactly equivalent to that from charge distributions. It
must be noted, however, that expression (43) is somewhat
more general than (52) in the sense that it is valid for
particles with arbitrary spin. Nevertheless, one can show
that both expressions lead to the same result. We decided,
however, to start from (52) simply because it contains only
a first-order derivative.

3.3 The charge radius as an expectation value with
respect to Salpeter amplitudes

We now want to analyze the charge radius in the Bethe-
Salpeter framework for a three-quark system. It is essen-
tial to know the Q2-dependence of the current matrix el-
ement (26). So let us inspect its P -dependent part alone:

[

S2
ΛP
⊗ S2

ΛP
⊗ S3

F

(

M − Λ−1P

2
pη
)

]

ΓΛ
M (
−−−−→
Λ−1P

2
pξ,
−−−−→
Λ−1P

2
pη)

:=
[

S2
ΛP
⊗ S2

ΛP
⊗ 1I

]

f
(

Λ−1P

2
pξ, Λ

−1
P

2
pη
)

. (54)

We now exploit an important property of Lie groups,
namely that every group element may be represented as
an exponential mapping of the Lie algebra:

[

S2
ΛP
⊗ S2

ΛP
⊗ 1I

]

f
(

Λ−1P

2
pξ, Λ

−1
P

2
pη
)

= exp(−2iη(P ) · K̂)f(pξ, pη). (55)

The parameter η, commonly called rapidity, is defined as
follows:

η(P ) :=
P

P 0
=

−q
2
√

M2 +Q2/4
, (56)

where the last equality follows from Breit frame kinemat-
ics. The operator K̂ is an infinitesimal boost. The genera-
tors of the Lorentz group are given by the following skew
symmetric tensors (see, e.g. [6]):

Jµν = i(xµ∂ν − xν∂µ), (57)

Sµν = i
4 [γ

µ, γν ]−, (58)

Because of skewness there are six independent quantities.
J0i are the three generators of boosts and the remain-
ing three operators generate rotations (in fact they are
the angular-momentum operators). In momentum space

we have Jµν
p = i(pµ∂/∂pν − pν∂/∂pµ). Sµν are the cor-

responding generators in Dirac space. The infinitesimal
boost K̂ then simply reads

K̂i = − J0ipξ − J
0i
pη + S0i ⊗ 1I⊗ 1I + 1I⊗ S0i ⊗ 1I

= i
(

− p0ξ ∂
∂pi

ξ

− piξ ∂
∂p0

ξ

− p0η ∂
∂piη
− piη ∂

∂p0
η

+ 1
2α

i ⊗ 1I⊗ 1I + 1I⊗ 1
2α

i ⊗ 1I
)

.

(59)

Inserting (55) back into the current matrix element (26)
we find

〈PP |j0(0)|P 〉 = −3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

× exp(−2iη(P ) · K̂)
[

1I⊗ 1I⊗ γ0q̂S3
F (M − pη)

]

× ΓΛ
M (pξ, pη). (60)

Since the charge radius is proportional to the slope of the
current matrix element (60) at Q2 = 0 we are interested in
the term of the expansion linear in Q2 and thus —because
|η(P )|2 is of order Q2— linear in |η(P )|2. Writing the
expansion explicitly out up to this order we have

〈PP |j0(0)|P 〉 = 2MQ

−3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

×



−2
3
∑

i,j=1

ηi(P )ηj(P )K̂iK̂j





×
[

1I⊗ 1I⊗ γ0q̂S3
F (M − pη)

]

ΓΛ
M (pξ, pη) +O(η4). (61)

By inserting this into (52), the charge radius then takes
the form:

〈r2〉 = − 18

MQ

3
∑

i,j=1

[

d

dQ2
ηi(P )ηj(P )

]

Q2=0

×
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

K̂iK̂j

×
[

1I⊗ 1I⊗ γ0q̂S3
F (M − pη)

]

ΓΛ
M (pξ, pη). (62)

The integration over the relative energies can now be per-
formed by using the partial fractions decomposition of the
fermion propagators:

Si
F (pi) = i

(

Λ+
i (pi)

p0i − ωi(pi) + iε
+

Λ−i (pi)

p0i + ωi(pi)− iε

)

γ0.

(63)
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With the aid of Cauchys theorem both integrations can
be performed and one obtains

〈r2〉 = 18

MQ

3
∑

i,j=1

[

d

dQ2
ηi(P )ηj(P )

]

Q2=0

×
∫

d3pξ
(2π)3

∫

d3pη
(2π)3

Γ
Λ

M (pξ,pη)

[

Λ+++

(M −Ω)
+

Λ−−−

(M +Ω)

]

×K̂ ′iK̂ ′j q̂3
[

Λ+++

(M −Ω)
+

Λ−−−

(M +Ω)

]

×[γ0 ⊗ γ0 ⊗ γ0]ΓΛ
M (pξ,pη). (64)

Now q̂3 denotes the charge operator acting on the third
fermion. After integration the boost becomes

K̂ ′i := − 1
2 (ω1−ω2)i ∂

∂pi
ξ

−(ω1+ω2)i
∂

∂piη
− ipi

1

2ω1

− ipi
2

2ω2

. (65)

Note that we used the anticommutator {γ0, αi}+ = 0 and

the relation Λ±i α
j = αjΛ∓i ±p

j
i/ωi here. Now by using re-

lations (18) and (24) one can replace the vertex functions
in (64) by Salpeter amplitudes. The result is an expecta-
tion value with respect to the Salpeter scalar product (20):

〈r2〉 = 18

MQ

3
∑

i,j=1

[

d

dQ2
ηi(P )ηj(P )

]

Q2=0

×〈ΦΛ
M |K̂ ′iK̂ ′j q̂3|ΦΛ

M 〉, (66)

Since K̂ ′ is a tensor operator of rank 1, that is a vec-
tor operator, K̂ ′iK̂ ′j is a Cartesian tensor operator of
rank 2. As is well known, every Cartesian tensor may be
decomposed into irreducible representations of the rota-
tion group SO(3). The decomposition of a rank-2 tensor
Tij is given by

Tij = 1
3 tr(T )δij +

1
2 (Tij − Tji)

+ 1
2 (Tij + Tji − 2

3 tr(T )δij). (67)

According to their transformation properties under rota-
tions, the first term belongs to the scalar representation,
the second to the vector representation and the last to
the five-dimensional representation of spin 2. Let us now
address the question, which of these representations will
vanish due to selection rules in the scalar product in (66).
Let us start with the vector representation:

3
∑

i,j=1

[

d

dQ2
ηi(P )ηj(P )

]

Q2=0

× 〈ΦΛ
M | 12

(

K̂ ′iK̂ ′j − K̂ ′jK̂ ′i
)

q̂3|ΦΛ
M 〉 = 0. (68)

This is so because ηi(P )ηj(P ) is symmetric, whereas

K̂ ′iK̂ ′j − K̂ ′jK̂ ′i is antisymmetric under the exchange of
indices. For the spin-2 representation we cite the Wigner-
Eckart theorem and in particular the triangularity relation
which states that for spherical tensor operators of rank k,

〈j1|T [k]
q |j2〉 = 0 unless |j1 − j2| ≤ k ≤ j1 + j2. (69)

In our case j1 = j2 = 1
2 and k = 2, so the spin-2 rep-

resentation in (67) gives no contribution. Only the scalar
representation contributes and we get from (67) and (66)

〈r2〉 = 6

MQ

[

d

dQ2
η2(P )

]

Q2=0

〈ΦΛ
M |K̂ ′2q̂3|ΦΛ

M 〉. (70)

Recalling the definition of the rapidity (56) we find

d

dQ2
η2(P )

∣

∣

∣

∣

Q2=0

=
1

4M2
, (71)

which brings us almost to our final result:

〈r2〉 = 3

2MQ
〈ΦΛ

M |
K̂ ′2

M2
q̂3|ΦΛ

M 〉, (72)

By rewriting K̂ ′
i
in terms of one-particle coordinates, we

find

K̂ ′i =
1

2

[

Ω

(

i ∂
∂pi

3

− 1

Ω

3
∑

α=1

ωαi
∂

∂piα

)

+ h.c.

]

. (73)

It is also useful to define

R̂ :=
1

Ω

3
∑

α=1

ωαi∇pα . (74)

The expression (72) is still not symmetric in all three par-
ticles. The third fermion seems to play a special role. How-
ever, this asymmetry is only due to the fact that in de-
riving the current matrix element we exploited the total
asymmetry of the vertex functions under particle inter-
change and coupled the photon to the third fermion ex-
clusively accounting for the other couplings by multiplying
with a factor of 3 (see [4]). If we reverse this procedure,
cancel the factor of 3 and symmetrize the expression over
the three particles, we end up with a symmetric version:

〈r2〉 = 1

Q 〈ΦΛ
M |ΦΛ

M 〉

× 〈ΦΛ
M |

3
∑

α=1

q̂α

4

[

Ω

M

(

i∇pα − R̂
)

+ h.c.

]2

|ΦΛ
M 〉. (75)

Now the sum runs over all three fermions. Note that we
also used the norm of the Salpeter amplitudes (19) to re-
place 2M by 〈ΦΛ

M |ΦΛ
M 〉.

3.4 Interpretation

Having derived an analytic expression for the mean square
charge radius of a bound three-fermion system with in-
stantaneous interaction kernels, it is worthwhile to give
the result a meaningful physical interpretation. To inter-
pret the operator between the Salpeter amplitudes it is
useful to note that i∇pα is the position operator in mo-
mentum space:

i∇pα ≡ x̂α. (76)
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Fig. 1. O denotes the origin of the reference frame, R the
position vector of the relativistic center of mass and x1 through
x3 the position vectors of the three fermions.

Consequently, the quantity R̂ as defined in (74) is the
canonical relativistic center of mass of a three-particle sys-
tem:

R̂ =
1

Ω

3
∑

α=1

ωαx̂α. (77)

At fermion momenta small compared to their masses, i.e.

|pα| ¿ mα, we have ωα → mα and thus the expression
reduces to the well-known non-relativistic center of mass:

R̂nr =
1

m1 +m2 +m3

3
∑

α=1

mαx̂α. (78)

The expression

i∇pα − R̂ = x̂α −
1

Ω

3
∑

β=1

ωβx̂β (79)

then corresponds to the position of particle α as measured
from the relativistic center of mass. Figure 1 illustrates
the situation. Since i∇pα − R̂ is the difference between
two vector operators, it is invariant under translations
and consequently the mean square radius (75) is trans-
lationally invariant. Finally, we want to call attention to
the relativistic factor Ω/M in (75) which weights the rela-
tive distance of each fermion with the collective relativistic
energy. Therefore an enhancement can be seen the more
relativistic the system is.

4 The magnetic moment

4.1 The magnetic moment as an expectation value

To derive magnetic moments from form factors in an anal-
ogous way we start from the parameterization (44) of the

electromagnetic vector current:

〈PP, λ′|j+(0)|P, λ〉
= e

[

F1(Q
2) + F2(Q

2)
]

ūλ′(PP )γ+uλ(P ), (80)

where the “+”-component of the current is defined by:

j+(0) = j1(0) + ij2(0). (81)

Note that this definition deviates from the definition of
the components of a spherical tensor operator of rank 1
which are usually given by

T
[1]
± := ∓ 1√

2
(T1 ± iT2) and T

[1]
0 := T3. (82)

The total spin of the system makes of course a spin flip so
we have λ′ 6= λ. The spin polarizations will be fixed later.
Evaluation of the spinorial part of this equation yields

ūλ′(PP )γ+uλ(P ) = 2
√

Q2 . (83)

Together with the definition of the magnetic Sachs form
factor (49) we then get from (80) the relation

GM (Q2) =
〈PP, λ′|j+(0)|P, λ〉

2
√

Q2
, (84)

which expresses the magnetic form factor in terms of spa-
tial components of the current matrix element. The mag-
netic moment is defined as the value of the magnetic form
factor at the photon point

〈µ〉 := GM (Q2 = 0). (85)

Because of the denominator in (84) taking this limit re-
quires some care. We need to know the Q2-dependence
of the current matrix element. But first let us choose the
three-momentum transfer to point in the 3-direction from
now on:

q :=





0
0
q3



 =
√

Q2 e3. (86)

With this choice we have [γ+, SΛP
]− = 0 such that the

current matrix element (27) now becomes

〈PP |j+(0)|P 〉 = −3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

×
[

S2
ΛP
⊗ S2

ΛP
⊗ S2

ΛP

]

[

1I⊗ 1I⊗ q̂γ+S3
F

(

M − Λ−1P

2
pη
)

]

×ΓΛ
M

(

Λ−1
P

2
pξ,Λ

−1
P

2
pη
)

. (87)

To extract the Q2-dependence of this expression we ex-
press the boost as an exponential just like in the previous
section on charge radii:

〈PP, λ′|j+(0)|P, λ〉=−3
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M,λ′(pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

× exp(−2iη(P ) · K̂)
[

1I⊗ 1I⊗ q̂γ+S3
F (M − pη)

]

×ΓΛ
M,λ(pξ, pη). (88)
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This time, however, the boost generator also acts on the
Dirac space of the third fermion as can be seen from the
current matrix element (87):

K̂i = i

[

− p0ξ ∂
∂pi

ξ

− piξ ∂
∂p0

ξ

− p0η ∂
∂piη
− piη ∂

∂p0
η

+ 1
2

(

αi ⊗ 1I⊗ 1I + cycl. perm.
)

]

. (89)

Inserting the expansion (88) into (84) and taking the limit
Q2 → 0 then shows that terms with O(η) > 1 van-

ish because η(P ) is of order
√

Q2. Concerning the first-
order term we find with the special choice of the three-
momentum transfer (86) and the definition of the rapid-
ity (56):

lim
Q2→0

η(P )
√

Q2
= lim

Q2→0

−
√

Q2

2
√

M2 +Q2/4
√

Q2
e3 =

−1
2M

e3.

(90)
Therefore, the static limit can safely be taken and we find
for the magnetic moment:

µ = − 3

4M2

∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M,λ′(pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

× iK̂3

[

1I⊗ 1I⊗ q̂γ+S3
F (M − pη)

]

ΓΛ
M,λ(pξ, pη). (91)

We inserted a factor 1/2M in this expression since the
wave functions are normalized to 2M as can be seen
from (19). Integration over the relative energies can now
be done after replacing the fermion propagators by their
partial fraction decomposition (63):

〈µ〉 = 3

2M

∫

d3pξ
(2π)3

∫

d3pη
(2π)3

Γ
Λ

M,λ′(pξ,pη)

×
[

Λ+++

(M −Ω)
+

Λ−−−

(M +Ω)

]

iF 3+q̂3

×
[

Λ+++

(M −Ω)
+

Λ−−−

(M +Ω)

]

[γ0 ⊗ γ0 ⊗ γ0]ΓΛ
M,λ(pξ,pη)

(92)

with the tensor operator:

F ij :=
1

2M

{

pj3
2ω3

[

1
2 (ω1−ω2) i ∂

∂pi
ξ

+(ω1+ω2) i
∂

∂piη
−h.c.

]

+
Ω

2ω3

(

1I⊗ 1I⊗ iαiαj
)

+
ω1 + ω2
2ω23

pi3p
j
3

}

, (93)

where we also used the anticommutator {γ0, αi}+ = 0 and

the relation Λ±i α
j = αjΛ∓i ± p

j
i/ωi. Note that the “+”-

component in the second index of F ij in (92) has to be
taken in the sense of (81). Before we analyze this expres-
sion further let us replace the vertex functions in (92) by
using the relations (18) and (24) to arrive at the compact
notation

〈µ〉 = 3

2M
〈ΦΛ

M,λ′ |F 3+q̂3|ΦΛ
M,λ〉. (94)

Since F ij is a product of two vector operators it consti-
tutes a Cartesian tensor operator of rank 2, which can be
decomposed into irreducible representations of the rota-
tion group according to (67). Just as we did when deriving
the charge radius, we may show that the contribution of
certain representations vanish. The scalar representation
gives no contribution because of the m-selection rule of
the Wigner-Eckart theorem, which states that

〈j1,m1|F [k]
q |j2,m2〉 = 0 unless m1 −m2 = q. (95)

In our case m1 = 1
2 , m2 = − 1

2 and q = 0. The spin-2 rep-
resentation vanishes because of the triangularity relation

〈 12 , 12 |T
[2]
q | 12 ,− 1

2 〉 = 0. (96)

We are thus left with the antisymmetric representation
belonging to spin 1 which we may write as a vector prod-
uct:

F 3+[1]
=
(

F 31 + iF 32
)[1]

= i√
2

3
∑

j,k=1

ε+jkF
jk, (97)

where it is understood to take the spherical “+1”-
component of the vector product as defined in (82). Note
that since F ij is contracted with the skew tensor εijk, the

last term in (93) that is proportional to pi3p
j
3 vanishes.

Inserting (97) back into (94) and choosing the spin pro-
jections λ′ = 1

2 and λ = − 1
2 then yields:

〈µ〉 = 3

2M
〈ΦΛ

M,1/2| 1√2

3
∑

j,k=1

ε+jkF
jkq̂3|ΦΛ

M,−1/2〉. (98)

By using the Wigner-Eckart theorem once again we re-
move the spin flip and turn the expression in an expecta-
tion value:

〈µ〉 = − 3

2M
〈ΦΛ

M,1/2|
3
∑

j,k=1

ε3jkF
jkq̂3|ΦΛ

M,1/2〉. (99)

To simplify (93) further we replace the relative coor-
dinates by one-particle coordinates:

F ij :=
1

2M

{

1

2

[

− Ω
ω3
pj3

(

i ∂
∂pi

3

− 1

Ω

3
∑

α=1

ωαi
∂

∂piα

)

− h.c.

]

+
Ω

2ω3

(

1I⊗ 1I⊗ iαiαj
)

}

. (100)

Since in the expectation value (99) F jk is contracted with
the skew symmetric tensor εijk it is suggested to define:

L̂i
Rα := εijkp

k
α

(

i ∂
∂pjα
− R̂j

)

. (101)

L̂i
Rα is obviously the total angular momentum of the

three-quark system with the correct center-of-mass mo-
tion removed. Furthermore, we identify the spin operator
S = 1

2Σ in the following contraction:

3
∑

j,k=1

εijkα
jαk = 2i

(

σi 1I
1I σi

)

= 2iΣi. (102)
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We then have

3
∑

j,k=1

εijkF
jk = − Ω

4Mω3

(

L̂3
Ri + 1I⊗ 1I⊗Σi + h.c.

)

.

(103)
This expression is still not symmetric in the three
fermions, so in the final step we symmetrize over the three
fermions in the same way as we did already when deriving
the charge radius:

〈µ〉 = 〈Φ
Λ
M |µ̂|ΦΛ

M 〉
〈ΦΛ

M |ΦΛ
M 〉

, (104)

where we defined the magnetic moment operator µ̂ which
follows from symmetrizing (103):

µ̂ =
1

2

[

Ω

M

3
∑

α=1

q̂α
2ωα

(

L̂3
Rα + 2S3

α

)

+ h.c.

]

(105)

with the one-particle spin operators

S1 := Σ/2⊗ 1I⊗ 1I ,

S2 := 1I⊗Σ/2⊗ 1I , (106)

S3 := 1I⊗ 1I⊗Σ/2 .

4.2 Interpretation

As has already been shown in the interpretation of the
charge radius, the term (79) corresponds to the position
of particle α as measured from the center of mass of the
system. One is thus naturally led to interpret L̂Rα defined
in (101) as the angular momentum (operator) observed
from the relativistic center of mass. As already mentioned
S1, S2 and S3 are one-particle spin operators. We there-
fore conclude that the magnetic moment of the system
can be decomposed in contributions of the fermion angu-
lar momenta and their spins:

〈µ〉 = 〈µL〉+ 2〈µS〉, (107)

with 〈µL〉 being the contribution of the angular momenta
of the three fermions:

〈µL〉 :=
1

〈ΦΛ
M |φΛM 〉

〈ΦΛ
M |

1

2

(

Ω

M

3
∑

α=1

q̂α
2ωα

L̂3
Rα+h.c.

)

|ΦΛ
M 〉

(108)
and 〈µS〉 the contribution of the fermion spins:

〈µS〉 :=
1

〈ΦΛ
M |φΛM 〉

〈ΦΛ
M |

Ω

M

3
∑

α=1

S3
α |ΦΛ

M 〉. (109)

Such a decomposition into spin and angular-momentum
contributions is not possible when extracting the mag-
netic moment from a form factor. It is thus another ben-
efit of the approach to static properties presented in this
work. In (105) we discover the same relativistic weight

factor Ω/M as has already been found in the charge ra-
dius. When taking the non-relativistic limit, the operator
µ̂ (105) becomes

µ̂nr =

3
∑

α=1

q̂α
2mα

ε3jkp
j
α



i ∂
∂pkα
− 1

M

3
∑

β=1

mβ i
∂

∂pi
β





+2

3
∑

α=1

q̂α
2mα

S3
α . (110)

Except for the center-of-mass correction this expression
is well known. We are thus led to conclude that we have
found the relativistic generalization of the non-relativistic
magnetic moment operator.

Although the expression (85) we started from holds
only for spin-1/2 states, one can, as in the case of the
charge radius, generalize the formalism to arbitrary spins
and the result is not different from the spin-1/2 case.

5 Extension to higher moments

The formalism presented so far paves the way for the cal-
culation of higher moments as well —an issue that we
briefly want to touch upon in this section. We take the
electric form factor as an example and work accordingly
with the “time” component of the current matrix ele-
ment (26). An arbitrary moment 〈m〉 of a charge distri-
bution is then given in general by

〈m〉 =
3
∑

i1,i2,...,in=1

Oi1i2...in

∫

d3xxi1xi2 · · ·xinρ(x),

(111)
where Oi1,i2,...,in is a tensor of rank n, which depends on
the moment to be computed. For example, for the charge
radius, considered so far, O is simply

Oi1i2 =
1

Q
δi1i2 . (112)

By similar steps, leading from eq. (28) to eq. (43), we get

〈m〉 = 1

2M

(−i
2

)n 3
∑

i1,i2,...,in=1

Oi1i2...in

× ∂

∂P i1

∂

∂P i2
· · · ∂

∂P in
〈PP |j0(0)|P 〉

∣

∣

∣

∣

P=0

. (113)

The current matrix element appearing here is defined in
eq. (26). As before its P -dependent part is given by an
exponential of infinitesimal boosts as in eq. (55). Because

lim
P→0

η(P ) = 0 and
∂

∂P i
ηj(P )

∣

∣

∣

∣

P=0

=
δij
M
, (114)

we find

∂

∂P i1

∂

∂P i2
· · · ∂

∂P in
exp(−2iη(P ) · K̂)

∣

∣

∣

∣

P=0

=
(−2i)n
Mn

K̂i1K̂i2 · · · K̂in . (115)
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Note that to every xi from our starting equation (111)

corresponds now a boost generator K̂i. Using this result,
we get from eq. (113)

〈m〉 = 1

2M

3
∑

i1,i2,...,in=1

Oi1i2...in

×(−3)
∫

d4pξ
(2π)4

∫

d4pη
(2π)4

Γ
Λ

M (pξ,pη)

×
[

S1
F

(

pξ +
1
2pη
)

⊗ S2
F (−pξ + pη)⊗ S3

F (M − pη)
]

× 1

Mn
K̂i1K̂i2 · · · K̂in

×
[

1I⊗ 1I⊗ γ0q̂S3
F (M − pη)

]

ΓΛ
M (pξ, pη). (116)

Integrating out the dependence on the relative energies
after replacing the propagators according to eq. (63) then
results in

〈m〉 = 3

〈ΦΛ
M |ΦΛ

M 〉

×
3
∑

i1,i2,...,in=1

Oi1i2...in 〈ΦΛ
M |

1

Mn
K̂ ′i1K̂

′
i2 . . . K̂

′
in q̂3|Φ

Λ
M 〉

+off-diagonal matrix elements, (117)

where K̂ ′i is defined in eq. (65). For n > 2 we also find
terms involving matrix elements between different energy
components of the vertex function, i.e. between the sub-
spaces of purely positive- and negative-energy components
(denoted “off-diagonal matrix elements” in eq. (117)). Un-
fortunately, these terms cannot be expressed in a generic
way and have to be calculated explicitly for the moment
under consideration. One might, however, expect that
these additional contributions are in fact small; first, be-
cause the negative-energy components correspond to the
“small” components of the Dirac equation and thus van-
ish in the non-relativistic limit and, second, because both
energy subspaces are orthogonal. Note that although the
first term of eq. (117) also involves matrix elements be-
tween different energy subspaces of the Salpeter ampli-
tudes, one can show that these do in fact vanish.

Finally, we may symmetrize the expectation value in
eq. (117) over the three fermions to obtain

〈m〉 = 1

〈ΦΛ
M |ΦΛ

M 〉

3
∑

i1,i2,...,in=1

Oi1i2...in

×〈ΦΛ
M |

3
∑

α=1

K̂ ′′i1 αK̂
′′
i2 α . . . K̂

′′
in αq̂α|ΦΛ

M 〉

+off-diagonal matrix elements, (118)

where K̂ ′′i α is defined as

K̂ ′′i α =
1

2

[

Ω

M

(

i
∂

∂piα
− R̂

)

+ h.c.

]

. (119)

If, e.g., we insert eq. (112) into the final result (118) we in-
stantly obtain the charge radius expression (75). What has

been said about its interpretation also applies to eq. (118)
in its general form.

In this sense a generalization of the formalism pre-
sented in this work to arbitrary moments is possible, al-
though those discussed in detail, namely the charge radius
and the magnetic moment, are by far the most interesting,
having in addition the soundest empirical basis.

6 Application to static properties of baryons

We would like to illustrate the relevance of the preceeding
theoretical considerations by applying them to an existing
physical model. In refs. [1–3] a relativistic covariant quark
model for baryons is treated, based on assumptions which
also entered the work at hand, i.e. instantaneous interac-
tion kernels and free fermion propagators corresponding to
effective fermion masses. The model successfully describes
mass spectra of strange and non-strange baryons up to the
highest orbital and radial excitations employing a linear
confinement potential and a residual interaction based on
an effective instanton force. The seven parameters enter-
ing the model are fixed by a fit to the best established
resonances. We use the wave functions, i.e. Salpeter am-
plitudes, that have been obtained by solving the Salpeter
equation within this model to compute the expectation
values of the charge radius and magnetic-moment opera-
tor derived in this work. Since no further parameters are
introduced the results are genuine predictions.

6.1 Nucleon charge radii

The proton charge radius that we obtain by computation
of the expectation value (75) amounts to

√

〈r2〉proton = 0.86 fm, (120)

in excellent agreement with the experimental value of
0.87± 0.008 fm from ref. [7]. The mean square charge ra-
dius of the neutron, however, results in

〈r2〉neutron = −0.206 fm2 (121)

and overestimates the empirical number of −0.1161 ±
0.0022 fm2 from ref. [7] by 77%. Within the same model
the authors of ref. [4] have calculated the neutron electric
form factor and extracted a mean square charge radius of
−0.11 fm2 from it. The procedure, however, was numeri-
cally erroneous and a reanalysis, improving the numerical
precision, resulted in a radius that is indeed compatible
with our result.

6.2 Baryon octet magnetic moments

In the same model we have computed the nucleon mag-
netic moments using our formula (104). For the proton we
find a magnetic moment of

〈µ〉proton = 2.77µN (122)
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Table 1. Hyperon magnetic moments compared to the empir-
ical values.

Hyperon Experiment [7] This calculation

[µ/µN ] [µ/µN ]

Λ −0.613± 0.004 −0.61

Σ+ 2.458± 0.01 2.51

Σ0 – 0.75

Σ− −1.16± 0.025 −1.02

Ξ0 −1.25± 0.014 −1.33

Ξ− −0.6507± 0.0025 −0.56

Table 2. Prediction of magnetic moments of selected excited
nucleon states. I3 means third isospin component.

Nucleon resonance I3 Magnetic moment

[µ/µN ]

P 11(1440) 1/2 1.55

−1/2 −0.98

S11(1535) 1/2 0.37

−1/2 −0.1

in perfect agreement with the empirical value of 2.793µN .
The magnitude of the neutron magnetic moment

〈µ〉neutron = −1.71µN (123)

is rather small if compared to the experimental magnetic
moment of −1.913µN .

In addition to the nucleon magnetic moments we have
also calculated those of the strange octet baryons because
they are experimentally well covered. Table 1 compares
our results to the empirical values. The results are in ex-
cellent agreement with experiment. The largest deviation
of 14% is seen with the Ξ− magnetic moment.

Since efforts are being made to measure also magnetic
moments of excited nucleon states like the S11(1535)
as mentioned in ref. [8], we contribute some selected
predictions here. The magnetic moments of the nucleon
Roper resonance (P 11(1440)) and the lowest-lying state
with total spin 1/2 and negative parity (S11(1535)) are
shown in table 2. The formalism allows the computation
of magnetic moments of baryons with arbitrary spins
and their radial excitations which will be the subject of
a subsequent publication. The same is true of course for
the charge radius.

As has already been indicated, the magnetic moment
may be decomposed in spin and angular-momentum con-
tributions according to eq. (107). This decomposition en-
ables us to carry out a numerical analysis of the magni-
tudes of both spin and angular-momentum contributions.
Note that such a study is not possible by relying on form
factor calculations because there only the total magnitude
of the magnetic moment can be extracted. Table 3 lists

Table 3. Contributions of quark spins (2〈µS〉) and angular
momentum (〈µL〉) to the net magnetic moments of proton and
neutron.

2〈µS〉
2〈µS〉
〈µ〉

〈µL〉
〈µL〉
〈µ〉

[µ/µN ] [%] [µ/µN ] [%]

Proton 2.53 91 0.24 9

Neutron −1.59 93 −0.12 7

the contributions of spin and angular momentum to the
magnetic moments of proton and neutron. The analysis
shows, that the contribution of the quark spins exceeds
the contribution of the quark angular momenta by far.
There is however a small deviation from the predictions
of the SU(6) symmetry in the old non-relativistic quark
model. The SU(6) result for the ratio of proton and neu-
tron magnetic moments emerges only at very high quark
masses. One can state, however, that for constituent quark
masses used in our relativistic model 90% of the magnetic
moment is coming from quark spins which is due to the
fact that the quarks are dominantly in a relative S-wave.
This result also explains in part the success of the non-
relativistic quark model in predicting the magnetic mo-
ments. Our analysis shows that by neglecting the angular
motion of the quarks by assuming that the quarks are
in a relative S-wave, the induced error is in the percent
region. We should mention that for the S11(1535) the ab-
solute value of the spin contribution is only a quarter of
the angular-momentum contribution and opposite in sign.
Since this resonance is dominantly a P -wave the spin has
to be aligned antiparallel to the angular momentum to
result in a state with total spin 1/2. The preceeding dis-
cussion is, however, only true if we work with a constituent
quark mass of 330MeV.

We may, however, carry this analysis further by study-
ing the evolution of the spin/angular-momentum contri-
butions with decreasing constituent quark masses. Note
that the quark model described in refs. [1–3] assumes
isospin symmetry between up- and down-quark and thus
there is only one mass parameter for the nucleon. At dif-
ferent magnitudes of this mass parameter we have now
fitted the remaining six parameters of the model to the
baryon spectra. We might of course not expect to repro-
duce the spectra as well as with the original value of
330MeV but at least we were able to keep the ground
states, i.e. the nucleon and the ∆-particle at the empiri-
cal values. We achieved a quark mass as small as 25MeV
before numerical restrictions impeded us to go any fur-
ther. Figure 2 shows the effect on the spin and angular-
momentum contribution to the magnetic moment of pro-
ton and neutron. We see an almost linear decrease of the
spin contribution from its original value of a good 90% at
330MeV to roughly 60% at 25MeV. At the same time the
angular-momentum contribution gains in magnitude cor-
respondingly to roughly 40%. Lowering the constituent
quark mass in such a way should by no means be con-
fused with an attempt to approach the chiral limit in
our model. It just documents possible changes concern-
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Fig. 2. Fraction of the total magnetic moment carried by quark
spin and angular momentum, respectively, of proton and neu-
tron, respectively, as a function of the quark mass.

ing magnetic-moment results when a model parameter is
varied. Since our formula for the magnetic moment con-
tains a constituent quark mass dependence which is new
in comparison with non-relativistic calculations, we docu-
ment here the induced changes. Nevertheless, such a vari-
ation is not completely academic. In fact, the constituent
quark mass is not precisely fixed by QCD. What is fixed is
the mass function and much more is now known about its
momentum dependence from lattice QCD [9] since the ear-
liest QCD computation in 1976 [10]. In the region between
0GeV and 2GeV it varies as a function of momentum be-
tween ∼ 400MeV and ∼ 50MeV. One may define the con-
stituent quark mass as the value of the mass function at
p ≈ 0 but this is not compulsory; constituent quark mod-
els which aim at a description of high-mass resonances (up
3GeV) may even be forced to use a mass value at larger
momenta in order to take the full momentum dependence
effectively better into account. In any case our results show
that the surprisingly good SU(6) predictions of the non-
relativistic quark model are already accidental in a more
elaborate quark picture. The true explanation of magnetic
moments must in fact come from deeper results of QCD
and were indeed obtained recently by chirally improved
lattice calculations. Without going into details which the
reader may find to be reviewed and interpreted in, e.g.,
ref. [11] (which we quote here as a representative for the
vast efforts in this field) the SU(6) predictions of the non-
relativistic quark model results were already shown to be
accidental in the light of full QCD. These lattice results
(see again ref. [11]) indicate that the values of the mag-
netic moments contain contributions which can be inter-
preted as effects of a virtual meson cloud. To describe
mesonic effects in a quark model for even high-lying reso-
nances without violating the indispensable rules of formal
covariance seems to be out of reach and is perhaps even
not desirable. Quark models yield an easy access to the
understanding of the full hadron resonance spectrum and
will at some time be replaced by lattice calculations when
they become feasible.

7 Conclusion

We have shown how the charge radius and the magnetic
moment of a bound three-fermion system with instanta-
neous interactions can be formulated as expectation val-
ues with respect to Salpeter amplitudes. The correspond-
ing operators turned out to be natural relativistic gener-
alizations of their non-relativistic counterparts. We also
indicated how the formalism may be extended to higher
moments as well. A first application of the formalism to a
relativistic quark model for baryons with instantaneous in-
teractions described in refs. [1–3] results in a good descrip-
tion of the nucleon charge radii and baryon octet magnetic
moments except for the neutron radius. Predictions have
been made for the magnetic moments of the P 11(1440)
and S11(1535) resonances. We found in addition an inter-
esting dependence of the nucleon magnetic moments on
the quark masses. In particular, when constituent quark
masses are decreased to values almost as small as current
masses, the spin contributions become equal in magnitude
in comparison to the contributions of internal angular mo-
menta. Static observables of systems with spins other than
1/2 like, e.g., the baryon decuplet will be studied in the
future.
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